Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 884
Filtrar
1.
Phytother Res ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38595123

RESUMO

Insomnia affects millions of people worldwide, prompting considerable interest in herbal remedies for its treatment. This review aims to assess the therapeutic potential of such remedies for insomnia by analyzing current scientific evidence. The analysis identified several herbs, including Rosmarinus officinalis, Crocus sativus, Rosa damascena, Curcuma longa, Valeriana officinalis, Lactuca sativa, Portulaca oleracea, Citrus aurantium, Lippia citriodora, and Melissa officinalis, which show promise in improving overall sleep time, reducing sleep latency, and enhancing sleep quality. These plants act on the central nervous system, particularly the serotonergic and gamma-aminobutyric acid (GABA)ergic systems, promoting sedation and relaxation. However, further research is necessary to fully understand their mechanisms of action, optimal dosages, and treatment protocols. Combining herbal medicines with conventional treatments may offer an effective natural alternative for those seeking medication. Nevertheless, individuals should consult their healthcare provider before using herbal remedies for insomnia. While this review provides evidence supporting their use, additional high-quality studies are needed to firmly establish their clinical efficacy.

2.
Brain Behav Immun Health ; 38: 100761, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38586282

RESUMO

Inflammation, reduced gamma-aminobutyric acidergic (GABAergic) function and altered neuroplasticity are co-occurring pathophysiologies in major depressive disorder (MDD). However, the link between these biological changes remains unclear. We hypothesized that inflammation induces deficits in GABAergic interneuron markers and that this effect is mediated by brain-derived neurotrophic factor (BDNF). We report here that systemic inflammation induced by intraperitoneal injection of lipopolysaccharide (LPS) (0.125, 0.25, 0.5, 1, 2 mg/kg) in the first cohort of C57BL/6 mice (n = 72; 10-11 weeks; 50% female) resulted in increased interleukin 1-beta and interleukin-6 in prefrontal cortex (PFC) and hippocampus (HPC), as measured using enzyme-linked immunosorbent assay (ELISA). Quantitative real-time polymerase reaction (qPCR) was used to explore the effect of LPS on the expression of GABAergic interneuron markers. In the PFC of the second cohort (n = 39; 10-11 weeks; 50% female), 2 mg/kg of LPS decreased the expression of somatostatin (Sst) (p = 0.0014), parvalbumin (Pv) (p = 0.0257), cortistatin (Cort) (p = 0.0003), neuropeptide Y (Npy) (p = 0.0033) and cholecystokinin (Cck) (p = 0.0041), and did not affect corticotropin-releasing hormone (Crh) and vasoactive intestinal peptide (Vip) expression. In the HPC, 2 mg/kg of LPS decreased the expression of Sst (p = 0.0543), Cort (p = 0.0011), Npy (p = 0.0001), and Cck (p < 0.0001), and did not affect Crh, Pv, and Vip expression. LPS decreased the expression of Bdnf in the PFC (p < 0.0001) and HPC (p = 0.0003), which significantly correlated with affected markers (Sst, Pv, Cort, Cck, and Npy). Collectively, these results suggest that inflammation may causally contribute to cortical cell microcircuit GABAergic deficits observed in MDD.

3.
Folia Histochem Cytobiol ; 62(1): 37-49, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38563048

RESUMO

INTRODUCTION: Nitric oxide (NO) is present in various cell types in the central nervous system and plays a crucial role in the control of various cellular functions. The diurnal Mongolian gerbil is a member of the rodent family Muridae that exhibits unique physiological, anatomical, and behavioral differences from the nocturnal rat and mouse, which render it a useful model for studying the visual system. The purpose of this study was to confirm the distribution and morphology of neurons that contain nitric oxide synthase (NOS) and their pattern of co-expressing NOS with neuropeptide Y (NPY), somatostatin (SST), and gamma-aminobutyric acid (GABA) in the visual cortex of Mongolian gerbils. MATERIALS AND METHODS: Mongolian gerbils were used in the study. We confirmed the localization of NOS in the visual cortex of Mongolian gerbils using horseradish peroxidase immunocytochemistry, fluorescent immunocytochemistry, and conventional confocal microscopy. RESULTS: NOS-immunoreactive (IR) neurons were present in all layers of the visual cortex of the Mongolian gerbil, with the exception of layer I, with the highest density observed in layer V (50.00%). The predominant type of NOS-IR neurons was multipolar round/oval cells (60.96%). Two-color immunofluorescence revealed that 100% NOS-IR neurons were co-labeled with NPY and SST and 34.55% were co-labeled with GABA. CONCLUSIONS: Our findings of the laminar distribution and morphological characteristics of NOS-IR neurons, as well as the colocalization patterns of NOS-IR neurons with NPY, SST, and GABA, indicated the presence of species-specific differences, suggesting the functional diversity of NO in the visual cortex. This study provides valuable data on the anatomical organization of NOS-IR neurons and, consequently, a better understanding of the functional aspects of NO and species diversity.


Assuntos
Neurônios , Córtex Visual , Ratos , Camundongos , Animais , Gerbillinae/metabolismo , Neurônios/metabolismo , Óxido Nítrico Sintase/metabolismo , Ácido gama-Aminobutírico/metabolismo
4.
bioRxiv ; 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38586043

RESUMO

Cochlear outer hair cells (OHCs) are electromotile and are implicated in mechanisms of amplification of responses to sound that enhance sound sensitivity and frequency tuning. They send information to the brain through glutamatergic synapses onto a small subpopulation of neurons of the ascending auditory nerve, the type II spiral ganglion neurons (SGNs). The OHC synapses onto type II SGNs are sparse and weak, suggesting that type II SGNs respond primarily to loud and possibly damaging levels of sound. OHCs also receive innervation from the brain through the medial olivocochlear (MOC) efferent neurons. MOC neurons are cholinergic yet exert an inhibitory effect on auditory function as they are coupled to alpha9/alpha10 nicotinic acetylcholine receptors (nAChRs) on OHCs, which leads to calcium influx that gates SK potassium channels. The net hyperpolarization exerted by this efferent synapse reduces OHC activity-evoked electromotility and is implicated in cochlear gain control, protection against acoustic trauma, and attention. MOC neurons also label for markers of gamma-aminobutyric acid (GABA) and GABA synthesis. GABAB autoreceptor (GABABR) activation by GABA released from MOC terminals has been demonstrated to reduce ACh release, confirming important negative feedback roles for GABA. However, the full complement of GABAergic activity in the cochlea is not currently understood, including the mechanisms that regulate GABA release from MOC axon terminals, whether GABA diffuses from MOC axon terminals to other postsynaptic cells, and the location and function of GABAA receptors (GABAARs). Previous electron microscopy studies suggest that MOC neurons form contacts onto several other cell types in the cochlea, but whether these contacts form functional synapses, and what neurotransmitters are employed, are unknown. Here we use immunohistochemistry, optical neurotransmitter imaging and patch-clamp electrophysiology from hair cells, afferent dendrites, and efferent axons to demonstrate that in addition to presynaptic GABABR autoreceptor activation, MOC efferent axon terminals release GABA onto type II SGN afferent dendrites with postsynaptic activity mediated by GABAARs. This synapse may have multiple roles including developmental regulation of cochlear innervation, fine tuning of OHC activity, or providing feedback to the brain about MOC and OHC activity.

5.
World J Microbiol Biotechnol ; 40(5): 159, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607454

RESUMO

Gamma-aminobutyric acid (GABA) is a non-protein amino acid which is widely applied in agriculture and pharmaceutical additive industries. GABA is synthesized from glutamate through irreversible α-decarboxylation by glutamate decarboxylase. Recently, microbial synthesis has become an inevitable trend to produce GABA due to its sustainable characteristics. Therefore, reasonable microbial platform design and metabolic engineering strategies for improving production of GABA are arousing a considerable attraction. The strategies concentrate on microbial platform optimization, fermentation process optimization, rational metabolic engineering as key metabolic pathway modification, promoter optimization, site-directed mutagenesis, modular transporter engineering, and dynamic switch systems application. In this review, the microbial producers for GABA were summarized, including lactic acid bacteria, Corynebacterium glutamicum, and Escherichia coli, as well as the efficient strategies for optimizing them to improve the production of GABA.


Assuntos
Corynebacterium glutamicum , Ácido gama-Aminobutírico , Agricultura , Corynebacterium glutamicum/genética , Indústria Farmacêutica , Engenharia , Escherichia coli/genética
6.
J Nanobiotechnology ; 22(1): 190, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637808

RESUMO

Acute lung injury (ALI) is generally caused by severe respiratory infection and characterized by overexuberant inflammatory responses and inefficient pathogens-containing, the two major processes wherein alveolar macrophages (AMs) play a central role. Dysfunctional mitochondria have been linked with distorted macrophages and hence lung disorders, but few treatments are currently available to correct these defects. Plant-derive nanovesicles have gained significant attention because of their therapeutic potential, but the targeting cells and the underlying mechanism remain elusive. We herein prepared the nanovesicles from Artemisia annua, a well-known medicinal plant with multiple attributes involving anti-inflammatory, anti-infection, and metabolism-regulating properties. By applying three mice models of acute lung injury caused by bacterial endotoxin, influenza A virus (IAV) and SARS-CoV-2 pseudovirus respectively, we showed that Artemisia-derived nanovesicles (ADNVs) substantially alleviated lung immunopathology and raised the survival rate of challenged mice. Macrophage depletion and adoptive transfer studies confirmed the requirement of AMs for ADNVs effects. We identified that gamma-aminobutyric acid (GABA) enclosed in the vesicles is a major molecular effector mediating the regulatory roles of ADNVs. Specifically, GABA acts on macrophages through GABA receptors, promoting mitochondrial gene programming and bioenergy generation, reducing oxidative stress and inflammatory signals, thereby enhancing the adaptability of AMs to inflammation resolution. Collectively, this study identifies a promising nanotherapeutics for alleviating lung pathology, and elucidates a mechanism whereby the canonical neurotransmitter modifies AMs and mitochondria to resume tissue homeostasis, which may have broader implications for treating critical pulmonary diseases such as COVID-19.


Assuntos
Lesão Pulmonar Aguda , Plantas Medicinais , Pneumonia Viral , Pneumonia , Camundongos , Animais , Macrófagos Alveolares/metabolismo , Pulmão/metabolismo , Pneumonia Viral/tratamento farmacológico , Lesão Pulmonar Aguda/patologia , Mitocôndrias/patologia , Ácido gama-Aminobutírico/metabolismo , Pneumonia/metabolismo
7.
Tzu Chi Med J ; 36(2): 103-109, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645778

RESUMO

Sleep is an essential activity for the survival of mammals. Good sleep quality helps promote the performance of daily functions. In contrast, insufficient sleep reduces the efficiency of daily activities, causes various chronic diseases like Alzheimer's disease, and increases the risk of having accidents. The GABAergic system is the primary inhibitory neurotransmitter system in the central nervous system. It transits the gamma-aminobutyric acid (GABA) neurotransmitter via GABAA and GABAB receptors to counterbalance excitatory neurotransmitters, such as glutamate, noradrenaline, serotonin, acetylcholine, orexin, and dopamine, which release and increase arousal activities during sleep. Several studies emphasized that dysfunction of the GABAergic system is related to insomnia, the most prevalent sleep-related disorder. The GABAergic system comprises the GABA neurotransmitter, GABA receptors, GABA synthesis, and degradation. Many studies have demonstrated that GABA levels correlate with sleep quality, suggesting that modulating the GABAergic system may be a promising therapeutic approach for insomnia. In this article, we highlight the significance of sleep, the classification and pathology of insomnia, and the impact of the GABAergic system changes on sleep. In addition, we also review the medications that target the GABAergic systems for insomnia, including benzodiazepines (BZDs), non-BZDs, barbiturates, GABA supplements, and Chinese herbal medicines.

8.
Bioresour Bioprocess ; 11(1): 32, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38647854

RESUMO

GABA (Gamma-aminobutyric acid), a crucial neurotransmitter in the central nervous system, has gained significant attention in recent years due to its extensive benefits for human health. The review focused on recent advances in the biosynthesis and production of GABA. To begin with, the investigation evaluates GABA-producing strains and metabolic pathways, focusing on microbial sources such as Lactic Acid Bacteria, Escherichia coli, and Corynebacterium glutamicum. The metabolic pathways of GABA are elaborated upon, including the GABA shunt and critical enzymes involved in its synthesis. Next, strategies to enhance microbial GABA production are discussed, including optimization of fermentation factors, different fermentation methods such as co-culture strategy and two-step fermentation, and modification of the GABA metabolic pathway. The review also explores methods for determining glutamate (Glu) and GABA levels, emphasizing the importance of accurate quantification. Furthermore, a comprehensive market analysis and prospects are provided, highlighting current trends, potential applications, and challenges in the GABA industry. Overall, this review serves as a valuable resource for researchers and industrialists working on GABA advancements, focusing on its efficient synthesis processes and various applications, and providing novel ideas and approaches to improve GABA yield and quality.

9.
Heliyon ; 10(7): e28401, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38586354

RESUMO

Background: Asthma, a principally T helper 2 (Th2) cell mediated immunological disease, is categorized into Th2-high and Th2-low endotypes. The influence of these endotypes on clinical characteristics and treatment responsiveness in asthma is yet to be completely understood. This study delves into the underlying molecular mechanisms of Th2 endotypes on asthma. Methods: Transcriptomics data of airway epithelial and corresponding clinical information were sourced from the GEO. The co-expression modules were established by WGCNA. Cytoscape was applied to construct PPI networks, and hub genes were determined via the Cytohubba plugin. Additionally, a functional enrichment analysis was conducted on the co-expressed genes from the relevant modules. The relative abundances levels of 22 different types of immune cells in asthma patients were evaluated by CIBERSORT algorithm. Results: There were 471 genes in the pink module significantly correlated with Th2 endotype. Overall, 151 DEGs were identified in the various Th2 endotypes, and 66 were obtained through intersection with the pink module. In the PPI network, the ten most important genes that regulate Th2 endotypes were selected as hub genes. In Th2-high endotype asthma, the hub genes were significantly related to γ-aminobutyric acid (GABA) pathways, indicating that hub genes can mainly regulate Th2-high endotype asthma through GABAergic system. Conclusions: The severity of asthma is influenced by different Th2 endotypes. GABAergic related hub genes may provide innovative insights for the treatment of Th2-high asthma.

10.
J Neurosci Res ; 102(3): e25318, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38491847

RESUMO

The projections of the basal forebrain (BF) to the hippocampus and neocortex have been extensively studied and shown to be important for higher cognitive functions, including attention, learning, and memory. Much less is known about the BF projections to the basolateral nuclear complex of the amygdala (BNC), although the cholinergic innervation of this region by the BF is actually far more robust than that of cortical areas. This review will focus on light and electron microscopic tract-tracing and immunohistochemical (IHC) studies, many of which were published in the last decade, that have analyzed the relationship of BF inputs and their receptors to specific neuronal subtypes in the BNC in order to better understand the anatomical substrates of BF-BNC circuitry. The results indicate that BF inputs to the BNC mainly target the basolateral nucleus of the BNC (BL) and arise from cholinergic, GABAergic, and perhaps glutamatergic BF neurons. Cholinergic inputs mainly target dendrites and spines of pyramidal neurons (PNs) that express muscarinic receptors (MRs). MRs are also expressed by cholinergic axons, as well as cortical and thalamic axons that synapse with PN dendrites and spines. BF GABAergic axons to the BL also express MRs and mainly target BL interneurons that contain parvalbumin. It is suggested that BF-BL circuitry could be very important for generating rhythmic oscillations known to be critical for emotional learning. BF cholinergic inputs to the BNC might also contribute to memory formation by activating M1 receptors located on PN dendritic shafts and spines that also express NMDA receptors.


Assuntos
Prosencéfalo Basal , Complexo Nuclear Basolateral da Amígdala , Neuroanatomia , Neurônios/ultraestrutura , Colinérgicos
11.
Eur J Pharmacol ; 970: 176494, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38484926

RESUMO

BACKGROUND: Inhalational anesthetics target the inhibitory extrasynaptic γ-aminobutyric acid type A (GABAA) receptors. Both neuronal and glial GABA mediate tonic inhibition of the extrasynaptic GABAA receptors. However, the role of glial GABA during inhalational anesthesia remains unclear. This study aimed to evaluate whether astrocytic GABA contributes to the action of different inhalational anesthetics. METHODS: Gene knockout of monoamine oxidase B (MAOB) was used to reduce astrocytic GABA levels in mice. The hypnotic and immobilizing effects of isoflurane, sevoflurane, and desflurane were assessed by evaluating the loss of righting reflex (LORR) and tail-pinch withdrawal response (LTWR) in MAOB knockout and wild-type mice. Minimum alveolar concentration (MAC) for LORR, time to LORR, MAC for LTWR and time to LTWR of isoflurane, sevoflurane, and desflurane were assessed. RESULTS: Time to LORR and time to LTWR with isoflurane were significantly longer in MAOB knockout mice than in wild-type mice (P < 0.001 and P = 0.032, respectively). Time to LORR with 0.8 MAC of sevoflurane was significantly longer in MAOB knockout mice than in wild-type mice (P < 0.001), but not with 1.0 MAC of sevoflurane (P=0.217). MAC for LTWR was significantly higher in MAOB knockout mice exposed to sevoflurane (P < 0.001). With desflurane, MAOB knockout mice had a significantly higher MAC for LORR (P = 0.003) and higher MAC for LTWR (P < 0.001) than wild-type mice. CONCLUSIONS: MAOB knockout mice showed reduced sensitivity to the hypnotic and immobilizing effects of isoflurane, sevoflurane, and desflurane. Behavioral tests revealed that the hypnotic and immobilizing effects of inhalational anesthetics would be mediated by astrocytic GABA.


Assuntos
Anestésicos Inalatórios , Isoflurano , Éteres Metílicos , Camundongos , Animais , Isoflurano/farmacologia , Sevoflurano/farmacologia , Desflurano/farmacologia , Anestésicos Inalatórios/farmacologia , Ácido gama-Aminobutírico , Hipnóticos e Sedativos , Camundongos Knockout , Receptores de GABA-A , Éteres Metílicos/farmacologia
12.
Curr Biol ; 34(8): 1646-1656.e4, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38518777

RESUMO

The obesity epidemic is principally driven by the consumption of more calories than the body requires. It is therefore essential that the mechanisms underpinning feeding behavior are defined. Neurons within the brainstem dorsal vagal complex (DVC) receive direct information from the digestive system and project to second-order regions in the brain to regulate food intake. Although γ-aminobutyric acid is expressed in the DVC (GABADVC), its function in this region has not been defined. In order to discover the unique gene expression signature of GABADVC cells, we used single-nucleus RNA sequencing (Nuc-seq), and this revealed 19 separate clusters. We next probed the function of GABADVC cells and discovered that the selective activation of GABADVC neurons significantly controls food intake and body weight. Optogenetic interrogation of GABADVC circuitry identified GABADVC → hypothalamic arcuate nucleus (ARC) projections as appetite suppressive without creating aversion. Electrophysiological analysis revealed that GABADVC → ARC stimulation inhibits hunger-promoting neuropeptide Y (NPY) neurons via GABA release. Adopting an intersectional genetics strategy, we clarify that the GABADVC → ARC circuit curbs food intake. These data identify GABADVC as a new modulator of feeding behavior and body weight and a controller of orexigenic NPY neuron activity, thereby providing insight into the neural underpinnings of obesity.


Assuntos
Núcleo Arqueado do Hipotálamo , Tronco Encefálico , Comportamento Alimentar , Núcleo Arqueado do Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo/fisiologia , Animais , Tronco Encefálico/fisiologia , Tronco Encefálico/metabolismo , Camundongos , Masculino , Comportamento Alimentar/fisiologia , Neurônios GABAérgicos/fisiologia , Neurônios GABAérgicos/metabolismo , Ácido gama-Aminobutírico/metabolismo , Ingestão de Alimentos/fisiologia , Camundongos Endogâmicos C57BL , Feminino
13.
Vopr Pitan ; 93(1): 120-124, 2024.
Artigo em Russo | MEDLINE | ID: mdl-38555616

RESUMO

Gamma-aminobutyric acid (GABA) is an endogenous bioactive compound with essential properties for the normal functioning of the human nervous system. As a potent neurotransmitter, it plays an important role in modulating synaptic transmission by exerting phasic inhibition of neurons. This and other effects of GABA provide the phenomenon of neural tissue plasticity underlying learning, memory, maturation and repair of neural tissue after damage. It also has a wide range of biological actions, including antihypertensive, anti-diabetic, antioxidant, and anti-inflammatory. In this regard, GABA is increasingly used in the composition of food for special dietary uses and dietary supplements. However, its adequate intake levels have not yet been assessed and its dietary intake has not been characterized. The aim of the review was to estimate the level of GABA intake under balanced consumption of foods, corresponding to rational norms that meet modern requirements of a healthy diet. Material and methods. The existing literature on the problem in recent years was reviewed using the databases RISC, CyberLeninka, Pubmed, and ResearchGate. Results. Based on the analysis of scientific literature, we evaluated the content of GABA in the average daily diet, compiled on the basis of the rational norms of food consumption that meet modern requirements for healthy nutrition (Order of the Ministry of Healthcare of the Russian Federation dated August 19, 2016. No. 614). The balanced diet can provide about 740 mg of GABA per day, mainly due to vegetables (potatoes - 419 mg/day, beet - 49 mg/day, pumpkin - 41 mg/day), fruits (apple - 15 mg/day, grapes - 3.8 mg/day), as well as low-fat dairy products (92 mg/day). Conclusion. The presented data may be useful in assessing the adequacy of enrichment of foods for special dietary uses and dietary supplements with GABA.


Assuntos
Dieta , Suplementos Nutricionais , Humanos , Ingestão de Alimentos , Frutas , Antioxidantes , Ácido gama-Aminobutírico
14.
Artigo em Inglês | MEDLINE | ID: mdl-38417785

RESUMO

BACKGROUND: Neurocognitive factors including aberrant reward learning, blunted GABA (gamma-aminobutyric acid), and potentiated stress sensitivity have been linked to anhedonia, a hallmark depressive symptom, possibly in a sex-dependent manner. However, previous research has not investigated the putative associations among these factors or the extent to which they represent trait- or state-based vulnerabilities for depression. METHODS: Young adults with current major depressive disorder (MDD) (n = 44), remitted MDD (n = 42), and healthy control participants (HCs) (n = 44), stratified by sex assigned at birth, underwent magnetic resonance spectroscopy to assess macromolecular contaminated GABA (GABA+) and then a reward learning task before and after acute stress. We assessed changes in reward learning after stress and associations with GABA+. RESULTS: Results revealed blunted baseline reward learning in participants with remitted MDD versus participants with current MDD and HCs but, surprisingly, no differences between participants with current MDD and HCs. Reward learning was reduced following acute stress regardless of depressive history. GABA+ in the rostral anterior cingulate cortex, but not the dorsolateral prefrontal cortex, was associated with reduced baseline reward learning only in female participants. GABA+ did not predict stress-related changes in reward learning. CONCLUSIONS: To our knowledge, this is the first study to investigate associations among GABA, reward learning, and stress reactivity in current versus past depression. Hypothesized depression-related differences in reward learning did not emerge, precluding claims about state versus trait vulnerabilities. However, our finding that blunted GABA was associated with greater reward learning in female participants provides novel insights into sex-selective associations between the frontal GABAergic inhibitory system and reward processing.

15.
J Neurophysiol ; 131(3): 529-540, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38323322

RESUMO

Cortical electroencephalograms (EEGs) may help understanding of neuropsychiatric illness and new treatment mechanisms. The aperiodic component (1/f) of EEG power spectra is often treated as noise, but recent studies suggest that changes to the aperiodic exponent of power spectra may reflect changes in excitation/inhibition balance, a concept linked to antidepressant effects, epilepsy, autism, and other clinical conditions. One confound of previous studies is behavioral state, because factors associated with behavioral state other than excitation/inhibition ratio may alter EEG parameters. Thus, to test the robustness of the aperiodic exponent as a predictor of excitation/inhibition ratio, we analyzed video-EEG during active exploration in mice of both sexes during various pharmacological manipulations with the fitting oscillations and one over f (FOOOF) algorithm. We found that GABAA receptor (GABAAR)-positive allosteric modulators increased the aperiodic exponent, consistent with the hypothesis that an increased exponent signals enhanced cortical inhibition, but other drugs (ketamine and GABAAR antagonists at subconvulsive doses) did not follow the prediction. To tilt excitation/inhibition ratio more selectively toward excitation, we suppressed the activity of parvalbumin-positive interneurons with Designer Receptors Exclusively Activated by Designer Drugs (DREADDs). Contrary to our expectations, circuit disinhibition with the DREADD increased the aperiodic exponent. We conclude that the aperiodic exponent of EEG power spectra does not yield a universally reliable marker of cortical excitation/inhibition ratio.NEW & NOTEWORTHY Neuropsychiatric illness may be associated with altered excitation/inhibition balance. A single electroencephalogram (EEG) parameter, the aperiodic exponent of power spectra, may predict the ratio between excitation and inhibition. Here, we use cortical EEGs in mice to evaluate this hypothesis, using pharmacological manipulations of known mechanism. We show that the aperiodic exponent of EEG power spectra is not a reliable marker of excitation/inhibition ratio. Thus, alternative markers of this ratio must be sought.


Assuntos
Eletroencefalografia , Ketamina , Masculino , Feminino , Camundongos , Animais , Receptores de GABA-A , Ketamina/farmacologia , Ácido gama-Aminobutírico
16.
J Agric Food Chem ; 72(6): 2977-2988, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38300259

RESUMO

This study investigated the effects of Lactobacillus brevis-fermented gamma-aminobutyric acid (LB-GABA) on depressive and anxiety-like behaviors with the underlying molecular mechanism in a chronic stress model of BALB/c mice. LB-GABA attenuates both neuronal cell death and the increase of monoamine oxidase activity induced by hydrogen peroxide. Behavioral tests revealed that GABA significantly increased sucrose preference and reduced immobility time in both tail suspension and forced swimming tests. LB-GABA increased exploration of the open arms in the elevated plus maze and restored activity in the open field. Moreover, LB-GABA lowered stress hormone and inflammatory mediator levels. Mechanistically, LB-GABA increased protein levels of BDNF and TrkB, activating downstream targets (AKT, ERK, and CREB), crucial for neuronal survival and plasticity. Furthermore, LB-GABA protected hippocampal neurons from stress-induced cell death and increased serotonin and dopamine levels. Overall, LB-GABA has the potential to alleviate stress-induced depression and anxiety-like symptoms and neuroinflammation by activating the BDNF-TrkB signaling pathway.


Assuntos
Depressão , Levilactobacillus brevis , Camundongos , Animais , Depressão/tratamento farmacológico , Depressão/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Tropomiosina , Camundongos Endogâmicos BALB C , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Transdução de Sinais , Ácido gama-Aminobutírico/metabolismo , Hipocampo , Modelos Animais de Doenças , Estresse Psicológico/tratamento farmacológico
17.
J Diet Suppl ; : 1-15, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321713

RESUMO

Gamma-aminobutyric acid (GABA) serves as a pivotal neurotransmitter implicated in the pathogenesis of stress, anxiety, sleep-related disorders, and heart rate (HR) reactions. Heart-rate variability (HRV), modulated by the sympathetic and parasympathetic branches of the autonomic nervous system (ANS), offers insights into cardiac autonomic control and cardiovascular well-being. The present study aimed to explore the impact of GABA supplementation on emotional metrics, sleep quality, and HRV in sedentary women with overweight or obesity partaking in physical exercise. A randomized, double-blind, placebo-controlled clinical trial was undertaken involving 30 sedentary women with overweight or obesity. Volunteers were assigned randomly to two groups: the intervention group receiving GABA (200 mg) once daily for a total of 90 supplementation doses, and the placebo group. Both groups engaged in physical exercise, while the supplementation regimen spanned 90 days. Assessments were conducted at three intervals: baseline (T0), midway through the study (T45), and study culmination (T90). Following 90 days of GABA supplementation, the intervention group demonstrated enhancements in habitual sleep efficiency, as indicated by reductions in Pittsburgh Sleep Quality Index (PSQI) scores. Moreover, an improved emotional response was observed, characterized by diminished negative affect. GABA supplementation yielded ameliorations in depression scores as per the Depression, Anxiety, and Stress Scale (DASS-21). Notably, an augmented HRV was noted, attributed to heightened parasympathetic autonomic nervous system predominance. GABA supplementation elicited noteworthy enhancements in heart rate variability, emotional response, depression mitigation, and sleep efficiency following a 90-day supplementation.

18.
Sci Total Environ ; 920: 170914, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38354808

RESUMO

Ammonia and microcystin-LR (MC-LR) are both toxins that can be in eutrophic waters during cyanobacterial blooms. While previous studies have focused on the effects of ammonia exposure on fish neurobehavioral toxicity, little attention has been given to the effects of MC-LR and combined exposures to both. This study exposed adult female zebrafish to ammonia (30 mg/L) and MC-LR (10 µg/L) alone and in combination for 30 days to investigate their neurotoxic effects and underlying mechanisms. Behavioral results showed that exposure to ammonia and MC-LR, both alone and in combination, led to decreased locomotor activity and increased anxiety in fish. Histomorphological analysis revealed the formation of thrombi and vacuolization in the brain across all exposure groups. Exposure to ammonia and MC-LR resulted in significant increases in MDA contents, decreases in Mn-SOD activities, and alterations in GSH contents compared to the control. Single and combined exposure to ammonia and MC-LR also induced the release of inflammatory factors (IL-1ß and TNF-α) by activating the NOD/NF-κB signaling pathway. Furthermore, both ammonia and MC-LR significantly changed the expression of genes related to the glutamatergic and GABAergic systems, elevated Glu and GABA contents, as well as increased the Glu/GABA ratio, indicating that a shift towards increased Glu levels. Overall, these findings suggested that exposure to MC-LR and ammonia, individually and in combination, could decrease locomotor activity and increase anxiety of female zebrafish. This was likely due to brain damage from over-activated ROS and the release of pro-inflammatory cytokines, which led to a disruption in the balance of glutamatergic and GABAergic systems. However, there was no significant interaction between MC-LR and ammonia in fish neurobehavioral toxicity.


Assuntos
Toxinas Marinhas , Poluentes Químicos da Água , Peixe-Zebra , Animais , Feminino , Peixe-Zebra/metabolismo , Amônia/toxicidade , Amônia/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácido Glutâmico/metabolismo , Microcistinas/toxicidade , Microcistinas/metabolismo , Inflamação/induzido quimicamente , Ácido gama-Aminobutírico/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
19.
Chin Herb Med ; 16(1): 42-55, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38375054

RESUMO

The mild-natured and bitter-flavored traditional Chinese medicines (MB-TCMs) are an important class of TCMs that have been widely used in clinical practice and recognized as safe long-term treatments for chronic diseases. However, as an important class of TCMs, the panorama of pharmacological effects and the mechanisms of MB-TCMs have not been systemically reviewed. Compelling studies have shown that gut microbiota can mediate the therapeutic activity of TCMs and help to elucidate the core principles of TCM medicinal theory. In this systematic review, we found that MB-TCMs commonly participated in the modulation of metabolic syndrome, intestinal inflammation, nervous system disease and cardiovascular system disease in association with promoting the growth of beneficial bacteria Bacteroides, Akkermansia, Lactobacillus, Bifidobacterium, Roseburia as well as inhibiting the proliferation of harmful bacteria Helicobacter, Enterococcus, Desulfovibrio and Escherichia-Shigella. These alterations, correspondingly, enhance the generation of protective metabolites, mainly including short-chain fatty acids (SCFAs), bile acid (BAs), 5-hydroxytryptamine (5-HT), indole and gamma-aminobutyric acid (GABA), and inhibit the generation of harmful metabolites, such as proinflammatory factors trimethylamine oxide (TAMO) and lipopolysaccharide (LPS), to further exert multiplicative effects for the maintenance of human health through several different signaling pathways. Altogether, this present review has attempted to comprehensively summarize the relationship between MB-TCMs and gut microbiota by establishing the TCMs-gut microbiota-metabolite-signaling pathway-diseases axis, which may provide new insight into the study of TCM medicinal theories and their clinical applications.

20.
J Microbiol Biotechnol ; 34(4): 1-10, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38379308

RESUMO

The genome-scale metabolic model (GEM) can be used to simulate cellular metabolic phenotypes under various environmental or genetic conditions. This study utilized the GEM to observe the internal metabolic fluxes of recombinant Escherichia coli producing gamma-aminobutyric acid (GABA). Recombinant E. coli was cultivated in a fermenter under three conditions: pH 7, pH 5, and additional succinic acids. External fluxes were calculated from cultivation results, and internal fluxes were calculated through flux optimization. Based on the internal flux analysis, glycolysis and pentose phosphate pathways were repressed under cultivation at pH 5, even though glutamate dehydrogenase increased GABA production. Notably, this repression was halted by adding succinic acid. Furthermore, proper sucA repression is a promising target for developing strains more capable of producing GABA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...